**Vanishing results for character tables**

Alexander R. Miller

Oberwolfach Reports 19 (2022), to appear

**The characters of symmetric groups that depend only on length**

Alexander R. Miller

Math. Z., to appear

**On Foulkes characters**

Alexander R. Miller

Math. Ann. 381 (2021) 1589-1614

**The sparsity of character tables of high rank groups of Lie type**

Michael J. Larsen and Alexander R. Miller

Represent. Theory 25 (2021) 173-192

**Zeros and roots of unity in character tables**

Alexander R. Miller

Enseign. Math., to appear

**Many zeros of many characters of GL(n,q)**

Patrick X. Gallagher, Michael J. Larsen, and Alexander R. Miller

Int. Math. Res. Not. IMRN 2022 4376-4386

**Congruences in character tables of symmetric groups**

Alexander R. Miller

Preprint

**Dense proportions of zeros in character values**

Alexander R. Miller

C. R. Math. Acad. Sci. Paris 357 (2019), no. 10, 771-772

**Character restrictions and reflection groups**

Eugenio Giannelli and Alexander R. Miller

J. Algebra 531 (2019) 336-348

**On parity and characters of symmetric groups**

Alexander R. Miller

J. Combin. Theory Ser. A 162 (2019) 231-240

**Walls in Milnor fiber complexes**

Alexander R. Miller

Doc. Math. 23 (2018) 1247-1261

**Milnor fiber complexes and some representations**

Alexander R. Miller

Oberwolfach Reports 15 (2018) 109-113

**Orthogonal polynomials and Smith normal form**

Alexander R. Miller and Dennis Stanton

Monatsh. Math. 187 (2018), no. 1, 125-145

**Some characters that depend only on length**

Alexander R. Miller

Math. Res. Lett. 24 (2017), no. 3, 879-891

**Eigenspace arrangements of reflection groups**

Alexander R. Miller

Trans. Amer. Math. Soc. 367 (2015), no. 12, 8543-8578

**Foulkes characters for complex reflection groups**

Alexander R. Miller

Proc. Amer. Math. Soc. 143 (2015), no. 8, 3281-3293

**The probability that a character value is zero for the symmetric group**

Alexander R. Miller

Math. Z. 277 (2014), no. 3-4, 1011-1015

**Reflection arrangements and ribbon representations**

Alexander R. Miller

European J. Combin. 39 (2014) 24-56

**Reflection arrangements and ribbon representations**

Alexander R. Miller

Thesis (Ph.D.)-University of Minnesota, 2013. 64 pp. ISBN: 978-1303-51327-5

**Differential posets have strict rank growth: a conjecture of Stanley**

Alexander R. Miller

Order 30 (2013), no. 2, 657-662

unpublished letter presented in talks

**Note on 1-crossing partitions**

M. Bergerson, A. Miller, A. Pliml, V. Reiner, P. Shearer, D. Stanton, and N. Switala

Ars Combin. 99 (2011) 83-87

**Differential posets and Smith normal forms**

Alexander Miller and Victor Reiner

Order 26 (2009), no. 3, 197-228