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Interest in zeros of characters goes back to the beginning of character theory with
Burnside’s result that each nonlinear irreducible character χ of a finite group G has
zeros. But how many zeros? In particular, we ask the following [3].

Question 1. What is the chance that a character value χ(g) equals 0?

The two most natural ways of choosing a character value χ(g) are as follows.

1) Choose χ ∈ Irr(G) and g ∈ G uniformly at random, and then evaluate χ(g).
The chance that χ(g) equals zero will be denoted by Prob(χ(g) = 0), so

Prob(χ(g) = 0) =
|{(χ, g) ∈ Irr(G)×G : χ(g) = 0}|

|Irr(G)×G|
.

2) Choose χ ∈ Irr(G) and a class K = gG ∈ Cl(G) uniformly at random, and
then evaluate χ(K) := χ(g). In other words, choose an entry χ(K) uniformly at
random from the character table of G. The chance that χ(K) equals zero will
be denoted by Prob(χ(K) = 0), so

Prob(χ(K) = 0) =
|{(χ,K) ∈ Irr(G)× Cl(G) : χ(K) = 0}|

|Irr(G)× Cl(G)|
.

Example 2. If G = S4, then

Prob(χ(g) = 0) =
28

120
≈ 0.194 and Prob(χ(K) = 0) =

4

25
= 0.16.

§1. It turns out that many characters have many zeros. The first result in this
direction is for symmetric groups [3, Theorem 1].

Theorem 3. If χ ∈ Irr(Sn) and g ∈ Sn are chosen uniformly at random, then

χ(g) = 0 with probability → 1 as n → ∞.

One of the two proofs given in [3] proceeds by showing that a vanishingly small
fraction of Cl(Sn) covers almost all of Sn. The key ingredient here is the following
inequality [3, Proposition 3].

Lemma 4. For any finite group G and any collection K ⊆ Cl(G),

Prob(χ(g) = 0) ≥
|{g ∈ G : gG ∈ K}|

|G|
−

|K|

|Cl(G)|
.

Different groups require different tools. The following bound in terms of char-
acter degrees and class sizes was established in joint work of P. X. Gallagher,
M. J. Larsen, and the speaker [1].

Lemma 5. For each finite group G and each ǫ > 0,

Prob(χ(g) 6= 0) ≤
|{(χ, g) ∈ Irr(G)×G : gcd(χ(1), |gG|) ≥ ǫχ(1)}|

|Irr(G)×G|
+ ǫ2.
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Lemma 5 was used in [1] to establish the GL(n, q) analogue of Theorem 3.

Theorem 6. For G = GL(n, q), the proportion Pn,q of pairs (χ, g) ∈ Irr(G) × G
with χ(g) = 0 satisfies

inf
q
Pn,q → 1 as n → ∞.

So for any sequence of prime powers q1, q2, . . ., we have Pn,qn → 1 as n → ∞.

We also have the following result about the sparsity of the character tables of
finite simple groups of Lie type due to M. Larsen and the speaker [2, Theorem 1.1].

Theorem 7. If Gn is any sequence of finite simple groups of Lie type with rank

tending to ∞, then almost every entry in the character table of Gn is zero as n → ∞.

In other words, the fraction of the character table of Gn that is covered by zeros

tends to 1 as n → ∞.

For Sn, however, we do not know the limiting behavior of Prob(χ(K) = 0),
which we shall denote by Prob(χλ(µ) = 0) with the understanding that λ and µ
are chosen uniformly at random from the partitions of n and χλ(µ) is shorthand
for the value of χλ at any permutation of cycle type µ. See [3] and [4, Table 3].
The following question [3, Question 2] is wide open.

Question 8. What can be said about the limiting behavior of Prob(χλ(µ) = 0)?

§2. Instead of Prob(χλ(µ) = 0), what happens if we work mod 2? One might
guess that Prob(χλ(µ) ≡ 0 mod 2) → 1/2 as n → ∞. And for n = 4, 5, . . . , 10,
the proportions are approximately 0.24, 0.33, 0.36, 0.40, 0.55, 0.56, 0.55. But
the values keep growing. At n = 76, for example, roughly 87% of the more than
86 trillion entries in the character table of Sn are even. See [4] for more data.
The speaker also carried out computations for other primes and prime powers and
conjectured that, for any positive integer m, Prob(χλ(µ) ≡ 0 mod m) → 1. After
several partial results by various authors, this conjecture is now known to be true.

§3. Let P (G) denote a fixed choice of either Prob(χ(g) = 0) or Prob(χ(K) = 0).
So far, we have discussed starting with a sequence of groups G1, G2, . . . and then
studying the corresponding fractions P (G1), P (G2), . . . ∈ [0, 1].

3.1. P (G) can also be studied as a random variable itself, with G chosen from
some distribution. For example, we can choose a random Young subgroup Sλ

of Sn. The natural question is then: What is the expected value of P (Sλ) when λ
is chosen uniformly at random from the partitions of n? The answer is the following
[5, Theorem 2].

Theorem 9. The expected value of P (Sλ) tends to 1 as n → ∞.

3.2. We can also ask what the sequences P (G1), P (G2), . . . can possibly look like.
The following answer is Theorem 1 in [5].

Theorem 10. If a1, a2, . . . ∈ [0, 1] and ǫ1, ǫ2, . . . ∈ (0,∞), then for each prime p
there exists an ascending chain of p-groups G1 < G2 < . . . such that, for each i,

|P (Gi)− ai| < ǫi.

In particular, the set {P (G) : |G| < ∞} is dense in [0, 1].
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§4. There are also the classical results of J. G. Thompson and P. X. Gallagher
involving both zeros and roots of unity. Thompson proved that if χ ∈ Irr(G), then
χ(g) is either zero or a root of unity for more than a third of the elements g ∈ G.
In terms of the function

θ(G) = min
χ∈Irr(G)

|{g ∈ G : χ(g) is zero or a root of unity}|

|G|
,

Thompson’s result says
θ(G) > 1/3.

Gallagher proved similarly that if K is a larger than average conjugacy class of a
finite group G, then χ(K) is either zero or a root of unity for more than a third of
the characters χ ∈ Irr(G). In terms of the function

θ′(G) = min
K

|{χ ∈ Irr(G) : χ(K) is zero or a root of unity}|

|Irr(G)|
,

with the minimum taken over all larger than average conjugacy classes K of G,
Gallagher’s result says

θ′(G) > 1/3.

We ask in [6] if the Thompson and Gallagher lower bounds are the best possible.
More specifically, we ask the following [6, Questions 1 and 2].

Question 11. What are the greatest lower bounds infG θ(G) and infG θ′(G)?

The main conjecture of [6] is the following answer.

Conjecture 12. inf θ(G) = 1/2 and inf θ′(G) = 1/2.

The greatest lower bounds can not be greater than 1/2 [6, Eqs. (20) and (21)].

Proposition 13. For Gn = Suz(22n+1), we have θ(Gn) →
1
2

+
and θ′(Gn) →

1
2

+
.

So Conjecture 12 is equivalent to the following [6, Conjecture 1].

Conjecture 14. θ(G) ≥ 1/2 and θ′(G) ≥ 1/2 for every finite group G.

As evidence for the conjecture, we have the following [6, Cor. 3 and Thm. 10].

Theorem 15. Conjecture 14 holds for the following groups.

- All finite groups of order < 29.
- All simple groups of order ≤ 109.
- All sporadic groups.

- An, L2(q), Suz(2
2n+1), Ree(32n+1).

- All finite nilpotent groups.

In fact for finite nilpotent groups we have the following much stronger results
[6, Theorems 1 and 2].

Theorem 16. Each nonlinear irreducible character of a finite nilpotent group is

zero on more than half of the group elements.

Theorem 17. More than half of the nonlinear irreducible characters of a finite

nilpotent group are zero on any given larger than average class.

The main new ingredient for these vanishing results is [6, Theorem 8], which is
a very strong improvement of a classical result of Siegel [7] about totally positive
algebraic integers, but in the context of the totally positive integers |χ(g)|2 coming
from finite nilpotent groups.
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