DENSE PROPORTIONS OF ZEROS IN CHARACTER VALUES
ALEXANDER R. MILLER

Abstract. Proportions of zeros in character tables of finite groups are dense in [0, 1].

For any finite group G, denote by Ga complete set of class representatives,
P;(G) the proportion of pairs (y, g) in Irr(G) x G with x(g) =0,
Py (G) the proportion of pairs (y, g) in Irr(G) X G with y(g) =0,

so Pp(G) is the proportion of zeros in the character table of G. Fixing a choice
P of P; or Py, Burnside’s result on the existence of zeros for nonlinear irreducible
characters [1] gives P(G) > 0 if and only if G is nonabelian.

The purpose of this note is to show:

Theorem 1. The set of proportions { P(G) : |G| < oo} is dense in [0, 1].

For any two sequences a, € [0, 1] and ¢, € (0,00), and any prime p, there is an ascending
chain of p-groups G; < G, < ... with |a, — P(Gy)| < &, for each n.

In particular, for each L € [0, 1], there is a chain of p-groups G, with P(G,) — L.
Lemma 1. For any finite nonabelian group G, we have P(G") — 1 asn — oo.

Proof. For any two finite groups X and Y, we have
P(X xY) = P(X) + (1= P(X))P(Y), ()
since for any y x ¢ € Irr(X x Y') we have (y x ¥)(x,y) = 0 if and only if y(x) = 0 or
both y(x) # 0 and ¥ (y) = 0. So for any finite group G, the sequence P(G") satisfies
P(G"™™) = P(G") + (1= P(G")P(G),
making P(G") monotonic, bounded, and thus convergent with limit L satisfying
L =L+ (1—-L)P(G), from which the result follows by Burnside. ]

Proof of Theorem 1. Fix a chain H, < H, < ... with H, extraspecial of order p>"*!

for each n, so H, has p?" + p — 1 irreducible characters, of which p — 1 are nonlinear,
and each nonlinear one vanishes off the center of order p, giving

(p — D>t —p)
(p2n _|_ p _ 1)p2n+1

(D> -1
(p>" +p—1)

Pi(H,) = —0 2)

and

Py(H,) =
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Leta € (0,1), e > 0,and G = H, x Hg, X ... x Hg, with k > 1. It suffices to
show that |a — P(G')| < ¢ for some G’ > G which is also a product of H;’s.
Put H = Hsk for some s > max; s; such that P(H;) < a/k. Then H > G and

by (1),
P(H) < kP(H,) < a.

Writing x = P(H), let [ be such that
P(H)) < min{

e a—x }
—x 1—x)"

Then the sequence P(H]") starts below (¢ — x)/(1 — x) and tends monotonically to 1
with steps of size < ¢/(1 — x) by Lemma 1 and the fact that

0 < P(H'')— P(H!") = (1— P(H")P(H)) < %

So for some m,

a—x & <P(Hlm)<a—x’
l-x 1-—x l—x
or equivalently, a — & < P(H x H") < a. ]

There is also an interesting consequence of Lemma 1 for Young subgroups
Sy ZSM XS)LZX...XSM <3S,
with A drawn uniformly at random from the partitions of n:

Theorem 2. The expected value of P(Sy) tends to 1 asn — oo.

Proof. Fix an integer k > 2, and let m; (1) denote the multiplicity of k in any given
partition A. Using (1), we have

P(S),) > P(S,Tk(k)) > P(SY') whenever my(A) > m,
so for any integer m > 0, the expected value of P(S}) is at least
Prob(my(A) > m)P(S;").
By [2, Thm. 2.1], lim,_, Prob(mz(A) > m) = 1 for any m, and by Lemma I,
P(S}') — 1 as m — o0, hence the expected value of P(S,) tends to 1 asn — oo. [
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