
Topology of Arrangements and Representation Stability 109

Theorem 3 (Hopf’s formula). If a group G has a presentation 〈S | R〉, then

H2(G;Z) ∼=
N ∩ [F, F ]

[F,N ]
,

where F = F (S) is the free group generated by S and N = N(R) is the normal
closure of R.

Applying Hopf’s formula to Coxeter groups and Artin groups with their stan-
dard presentations, we may construct explicitly second homology classes as cosets
x[F,N ] with x ∈ N ∩ [F, F ] as above. We manage to find a set Ω(W ) of generators
of H2(W ;Z) and a set Ω(A) of generators of H2(A;Z) such that the homomor-
phism p∗ : H2(A;Z) → H2(W ;Z) induced by the natural map p : A → W maps
Ω(A) onto Ω(W ). Moreover we have by construction #Ω(W ) = n(Γ). On the
other hand, Howlett proved the following.

Theorem 4 ([5]). For an arbitrary Coxeter graph Γ, we have

H2(W (Γ);Z) ∼= Z
n(Γ)
2 .

Hence we know that Ω(W ) is a basis of H2(W ;Z), and we have proved that p∗
is surjective. Theorem 2 follows without difficulties.

We expect that the above computation extends to higher homology of Artin
groups. In fact, we have the similar ingredients: H3(W ;Z) has been computed in
[4] and [2], the higher Hopf formulae have been studied in [3].
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Milnor fiber complexes and some representations

Alexander R. Miller

H. O. Foulkes discovered some amazing characters for the symmetric group Sn by
summing Specht modules of certain ribbon shapes according to height [7]. These
characters have some remarkable properties and have been the subject of many
investigations, most recently because of connections with adding random numbers,
shuffling cards, the Veronese embedding, and combinatorial Hopf algebras, see
[2, 5, 6, 9, 17]. We give a new approach to these characters which works for a wide
variety of reflection groups. The approach is geometric and based on an object
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called the Milnor fiber complex. It gives new results and it unifies, explains, and
extends previously known (type A) ones. This work appears in [12, 13, 14, 15].

Coxeter and Shephard groups. Let V be an ℓ-dimensional vector space overC, and
let G be a finite group with presentation

(1) 〈 r1, r2, . . . , rℓ | rpi

i = 1, rirjri . . .︸ ︷︷ ︸
mij terms

= rjrirj . . .︸ ︷︷ ︸
mji terms

i 6= j 〉

where pi ≥ 2,mij = mji ≥ 2, and pi = pj whenmij is odd. Write R = {r1, . . . , rℓ}.
Finite Coxeter groups are the ones where each pi is 2. In general G has a Coxeter-
like diagram Γ and a canonical faithful representation G ⊂ GL(V ) as a (complex)
reflection group in which the generators ri act on V as reflections in the sense
that they have finite order and the fixed spaces ker(1 − ri) are hyperplanes [10].
The group is identified with its canonical representation as a reflection group and
called irreducible if it acts irreducibly on V . Being irreducible is equivalent to the
diagram having exactly one connected component. Finite groups with presentation
(1) were classified in [10]. The irreducible ones are precisely the finite irreducible
Coxeter groups and the groups known as Shephard groups (symmetry groups of
objects called regular complex polytopes [3] studied by Shephard and Coxeter).

Milnor fiber complex. Associated to G is an abstract simplicial complex ∆ with
simplices (labeled by) cosets g〈I〉 of standard parabolic subgroups 〈I〉 (I ⊂ R) with
face relation “g〈I〉 is a face of h〈J〉” ⇔ g〈I〉 ⊃ h〈J〉, and with G acting by left
translation. If G is a Coxeter group, then this is the classical abstract description
of the Coxeter complex [26]. See [22, 19, 12, 15] for details, geometry, and history.

Foulkes characters. Each type-selected subcomplex ∆S (S ⊂ R) is a bouquet
of spheres, and we call the CG-module on the top reduced homology group
H|S|−1(∆S) a ribbon representation, see [12]. Its character ρS is an alternating
sum of characters induced by principal characters of parabolic subgroups [12].
The (generalized) Foulkes characters defined in [13] are

(2) φk =
∑

S⊂R
|S|=k

ρS (k = 0, 1, . . . , ℓ).

An immediate benefit of this approach is the following formula [13, Theorem 1]

(3) φk(g) =

ℓ∑

i=0

(−1)k−i

(
ℓ− i
k − i

)
fi−1(∆

g)

where ∆g = {σ ∈ ∆ : gσ = σ} and fk(Σ) is the number of k-simplices in Σ.
The face numbers fk(Σ) can be computed with a formula of Orlik and Solomon.
Assume G irreducible. Let L be the set of all intersections of reflecting hyperplanes
ordered by reverse inclusion, and let µ be the Möbius function. For X ∈ L define
BX(t) = (−1)dimX

∑
Y≥X µ(X,Y )(−t)dimY . Let d1 ≤ d2 ≤ . . . ≤ dℓ be the basic

degrees of G. Then Orlik [22] (after Orlik–Solomon in the Coxeter case) proved

(4) fi−1(∆
g) =

∑
Y
BY (d1 − 1)
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where the sum is over all i-dimensional subspaces Y above V g = ker(1− g) in L.

Elucidating and generalizing classical (type A) results. Our approach elucidates
and extends the type A theory (due to Foulkes, Kerber–Thürlings, Diaconis–
Fulman, and Isaacs), which previously rested on ad hoc proofs by induction.
See [13]. For example, if G is the wreath product Zr ≀ Sn (Zr cyclic of order r),
then L is a Dowling lattice and the restrictions LX depend only on the dimension
of X ∈ L, so that by (3) and (4) the φi’s depend only on fixed-space dimension in
the sense that φi(g) = φi(h) whenever dim V g = dimV h. The r = 1 case of this
is the classical fact that the Foulkes characters φi(g) of Sn depend only on the
number of cycles of g. The only previous proof of this for Sn is the original one
due to Foulkes [7] which uses the Murnaghan–Nakayama rule and induction.

Adding random numbers. Interestingly, these generalized Foulkes characters have
recently been connected to adding random numbers in other number systems.
Persi Diaconis and Jason Fulman [6] connected the hyperoctahedral ones (type B)
to adding random numbers in balanced ternary and other number systems that
minimize carries, and Nakano–Sadahiro [16] connected the Foulkes characters for
Zr ≀ Sn to a generalized carries process and riffle shuffles.

New phenomena. If G is the wreath product Zr ≀ Sn, then the Foulkes characters
form a basis for the space of class functions χ(g) of G that depend only on length
ℓ(g) = min{k : g = t1t2 . . . tk, ti a reflection}, see [13, 14]. Danny Goldstein,
Robert M. Guralnick, and Eric M. Rains together made the remarkable experi-
mental observation [18] that in fact the hyperoctahedral Foulkes characters play
the role of irreducibles among the hyperoctahedral characters that depend only
on length, in the sense that the characters of the hyperoctahedral group Bn that
depend only on length are precisely the N-linear combinations of the hyperocta-
hedral Foulkes characters. We prove this conjecture in [14]. In fact we prove that
the same is true for all wreath products Zr ≀ Sn with r > 1, not just r = 2.

It is an open problem to give a nice description of the characters χ(g) for Sn

(r = 1) that depend only on ℓ(g), or in other words, that depend only on the
number of cycles of g. Kerber [9, p. 306] noticed that already for S5 the N-linear
combinations of Foulkes character do not account for all the characters of S5 that
depend only on length. In [14] we prove that this is always the case for symmetric
groups Sn with n ≥ 3. Note: This line of investigation makes sense for any finite
group with given set of generators closed under conjugation.

Curious classification. In [13] we determined all the irreducible cases of G where
the φi’s depend only on fixed-space dimension. This led to a curious classification
with 11 equivalent conditions [13, Thm. 14]. For example, we find that the φi’s
depend only on fixed-space dimension if and only if the sequence of basic degrees
d1, d2, . . . , dℓ is arithmetic. Another equivalent condition is that the diagram of G
contains no subdiagram of type D4, F4, or H4. We recently found this condition
in [1] Abramenko’s answer to a geometric problem: In which Coxeter complexes ∆
are all walls ∆r (r a reflection) Coxeter complexes? In [15] we extend Abramenko’s
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result to Milnor fiber complexes in two ways and find another equivalent condition
for the Foulkes characters to depend only on fixed-space dimension. In the course
of that work we also discovered a beautiful enumerative condition [15, Thm. 11]:
if G is irreducible, then the diagram contains no subdiagram of type D4, F4, or H4

if and only if for each g ∈ G the number of top cells in ∆g is given by

(5) fp−1(∆
g) = d1d2 · · · dp, p = dimV g.
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Problem Session

Nate Harman, Aurélien Djament, Roberto Pagaria, Jeremy Miller,

Weiyan Chen, Jesse Wolfson, Masahiko Yoshinaga, Alexander R.

Miller, Graham Denham, Dan Petersen, Michael Falk

We hosted two evening problem sessions during the workshop. Various participants
from very different backgrounds proposed open questions to the audience. The
sessions stimulated active discussions among the participants. The problems are
collected below in the order that they were proposed.

1. Nate Harman (University of Chicago). The following standard theorem
from representation theory of the symmetric groups roughly says that “FI-modules
see all representations of polynomial growth”:

Theorem 1. Suppose Vn is a sequence of irreducible representations of Sn. If
there exists a constant d such that dim Vn < nd for all n ≫ 0, then either Vn or
Vn ⊗ sign is a factor of an FI-module generated in degree at most d.

With the motivation to understand low dimensional representations of the braid
group, we ask the following question:

Question 1. Is there an analog if we replace Sn by the braid group Bn?

Conjecture 1. All representations of Bn with slow growth come from finitely
generated modules over certain category.

Ivan Marin remarked that the conjecture is known for linear growth, e.g., in
the case when the dimension is n− 1. (see [5])

2. Aurélien Djament (CNRS, Nantes). Let k be a maximal ordered field
(e.g., k = R). Let’s consider the following monomorphisms between orthogonal
groups, for all n and i:

On(k)×Oi(k) →֒ On,i(k).

Question 2. Does this map induces an isomorphism of Hd(−,Z) for n≫ d, i?

The homology here is understood as the group homology of discrete groups.
For i = 1, a theorem of Bökstedt, Brun, and Dupont [2] shows that the answer

is yes for d < n.


